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Abstract. Recently linear bounding functions (LBFs) were proposed and used to find �-global
minima. This paper presents an LBF-based algorithm for multivariate global optimization problems.
The algorithm consists of three phases. In the global phase, big subregions not containing a solution
are quickly eliminated and those which possibly contain the solution are detected. An efficient scheme
for the local phase is developed using our previous local minimization algorithm, which is globally
convergent with superlinear/quadratic rate and does not require evaluation of gradients and Hessian
matrices. To ensure that the found minimizers are indeed the global solutions or save computation
effort, a third phase called the verification phase is often needed. Under adequate conditions the
algorithm finds the �-global solution(s) within finite steps. Numerical testing results illustrate how
the algorithm works, and demonstrate its potential and feasibility.
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1. Introduction

In recent years, global optimization has become one of the most interesting research
areas in optimization, since many real world problems are global rather than local
[5, 11, 17, 22]. Unlike local optimization, which has a rich theory and for which
many excellent numerical methods are available, global optimization has only been
partially researched. The enormous difficulties are due to the intrinsic multiex-
tremality of the formulation. Although properties such as smoothness or continuity
are often presented in global optimization problems, standard nonlinear program-
ming techniques have not been successful for solving these problems since they
can only be used to find a local minimizer instead of a global one. There is no
local criterion for deciding whether a local solution is global or not. On the other
hand, most criteria proposed for a global minimizer [11, 21] are not very practical
for solving general global optimization problems. For these reasons global opti-
mization methods are significantly different from standard nonlinear programming
techniques, and they are, in general, much more expensive computationally.

One class of deterministic approaches to global optimization is called covering
methods [11, 22]. It throws away subregions not containing global minima until
the remaining set is small enough and is known to contain global minimizers.
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Many methods have been developed for Lipschitz functions (e.g. [8, 12, 15, 25]).
A natural approach proposed by Pijavskij [16] and Shubert [20] is a sequential
algorithm which iteratively constructs piecewise linear underestimating functions
for an objective function with a known Liptschitz constant, and evaluates the
objective function at a point corresponding to a minimum of this bounding function.
From this point, the bounding function is split into two higher piecewise functions.

A widely used method is called branch and bound, and many algorithms can
be put into its framework [10, 11]. The basic idea of branch and bound methods
is to generate sequences of nonincreasing upper bounds and nondecreasing lower
bounds for an objective function by successfully refining partitions of feasible
regions until they approach each other closely enough. Several methods can be
applied to obtain upper and lower bounds of objective functions. For instance,
interval analysis can be used [6–9, 18]. The convex underestimating functions over
convex sets can be constructed iteratively for factorable function [14].

Recently the concept of linear bounding functions (LBFs) was introduced to
develop global optimization algorithms [1, 2, 4, 23].� For univariate problems, a
linear lower (upper) bounding function (LLBF/LUBF) of a given objective function
f(x) on an interval [a; b] is a linear underestimating (overestimating) function of
f(x) whose function value at one end point matches that of the given function.
Not only can LBFs be constructed for a large class of functions such as factorable
functions, but also they can be easily used to throw away subregions not containing
�-global minima. These advantages make the LBF method a promising approach
for global optimization problems.

The LBF-based algorithm for univariate global optimization in [23] consists of
two phases. In the global phase, it has the capability to quickly eliminate bigger
regions which do not contain a solution. In the local phase, it performs a finer
search over the remaining smaller regions which possibly contain a solution. To
find an efficient scheme for n-dimensional cases, we went back to re-examine local
optimization problems and discovered that the use of LBFs enables us to develop
a new framework of (local) optimization. From this framework we can develop
an optimization algorithm which is not only globally convergent with superlin-
ear/quadratic rate, but also does not require function and Hessian evaluations [24].
Usually, two-phase global optimization algorithms work well for univariate prob-
lems. For multivariate problems, however, two phases are probably not enough. To
ensure that the found minimizers are indeed the global solutions or save computa-
tion effort, we often need a third phase, called the verification phase. Unavoidably,
more information about the problem is needed in this phase.

The paper is organized as follows. In Section 2, the definition and properties of
LBFs are presented. In Section 3, the algorithm for the global phase is developed.
In Section 4, we review the new framework of local optimization and the algorithm
for the local phase is developed. In Section 5, the algorithm of the verification phase

� An LBF was called a linear bound in [1, 2, 4]. Since an LBF is actually a function, its new name
is more adequate.
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is developed. The global optimization algorithm and its convergence are given in
Section 6. Numerical testing results are presented in Section 7. In Section 8, a
discussion is given.

2. Linear bounding functions

2.1. LINEAR BOUNDING FUNCTIONS (LBFS)

Let f(x) : Rn ! R be a continuous function, and D an n-dimensional box in Rn,
i.e.,

D = fx 2 Rn
j A(i) 6 x(i) 6 B(i); A(i) < B(i); i = 1; . . . ; ng; (2.1)

where A = [A(1); � � � ; A(n)]T is the ‘lower left’ vertex of D, B = [B(1); . . . ;
B(n)]T the ‘upper right’ vertex of D.

Let x0 be an vertex of D. A linear function

l(x) = mT
f (x� x0) + f(x0) (2.2)

is a linear lower bounding function (LLBF) of f(x) over the box D with the
matching point x0 [23] if

f(x) > l(x); 8x 2 D: (2.3)

A linear upper bounding function (LUBF) is similarly defined by replacing >
in (2.3) by 6. We will use linear bounding functions (LBFs) to refer either or both
of LLBFs and LUBFs.

For a function F : Rn ! Rp, F (x) = [f1(x); . . . ; fp(x)]T , the function

l(x) = [l1(x); . . . ; lp(x)]
T

= F (x0) +mT
F (x� x0); (2.4)

where x0 is an extreme of D andmF is an n�p matrix, is called an LLBF of F (x)
over the box D if each li(x); i = 1; . . . ; p is an LLBF of fi(x) on D. An LUBF is
defined similarly.

Although it seems very difficult to obtain LBFs for any given function, we have
presented in [23] a procedure to construct LBFs for factorable functions over a
specified box. The procedure provides an LLBF, an LUBF, estimations of min and
max over the box and its function value at x0.

A generic factorable function, f : Rn ! R, has the form

f(x) = T (t(x)) + U(u(x)) � V (v(x)); (2.5)

where t(�); u(�) and v(�) are continuous functions of n variables and T (�); U(�)
and V (�) are continuous functions of a single variable. A general factorable func-
tion fN(x) can be constructed recursively by using the generic functions and is
expressed as

fN (x) �
N�1X
p=1

TN;p(fp(x)) +
N�1X
p=1

pX
q=1

UN;p;q(fq(x)) � VN;q;p(fp(x)); (2.6)

jogo343.tex; 30/06/1998; 13:20; v.7; p.3



386 XIAOJUN WANG AND TSU-SHUAN CHANG

where

fj(x) � xj; j = 1; . . . ; n; (2.7a)

fj(x) �

j�1X
p=1

Tj;p(fp(x)) +

j�1X
p=1

Uj;p;q(fq(x)) � Vj;q;p(fp(x)); (2.7b)

j = n+ 1; � � � ; N � 1; (2.7c)

and the T 0s,U 0s and V 0s are scalar functions of one variable. As mentioned in [13],
many functions belong to this large class of factorable functions.

In [23], the construction of an LBF for a general factorable function has two
parts. The first part is to construct LBFs for commonly used 1-D functions. The
second part generates LBFs for those functions with function forms such as the
minimum or maximum of several functions, summation, composition or produc-
tion. From these two parts, the LBFs for factorable functions can be recursively
constructed just like the function itself.

In this paper, the procedure to construct LBFs for factorable functions is used
in our numerical examples. However, the results hold for any functions, as long
as their LBFs can be obtained and have the same important properties as those
presented in [24] for factorable functions. Some of these important properties are
summarized in the next two subsections.

2.2. PROPERTIES OF LBFS

Assume that f : Rn ! R is twice continuously differentiable. An LBF l(x) (either
an LLBF or an LUBF) of f(x) on D is given by (2.4). Note that the n� p matrix
mF = mF (D;x0) is a function of D and x0.

Define

D +�D
∆
= fx 2 Rn

j A(i) + �A(i) 6 x(i)

6 B(i) + �B(j); j = 1; . . . ; ng: (2.8)

PROPOSITION 2.1. kmF (D;x0)k is finite if width(D)
∆
= maxifB(i) � A(i)g is

finite.

PROPOSITION 2.2. mF = mF (D;x0) is a continuous function of D and x0. In
other words, it satisfies
(i) for any given � > 0, there exists a � > 0 such that

kmF (D +�D;x00)�mF (D;x0)k < �; (2.9)
whenever(X

i

�
j�A(i)j + j�B(i)j

�2

)1=2

< � and kx00 � x0k < �; (2.10)
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(ii) if D contains only one point, i.e., D = fx0g, then
mF (D;x0) = rF (x0): (2.11)

For any x� 2 Rn, boxi � Rn, let (mF )i be associated with an LBF in the form
of (2.4) on boxi with a vertex xi. If xi ! x� and width(boxi)! 0 as i!1, then
according to the above propositions, k(mF )i�rF (x

�)k 6 k(mF )i�rF (xi)k+
krF (xi)�rF (x

�)k ! 0 as i!1.

2.3. QUADRATIC BOUNDING FUNCTIONS OF f(x)

In the LBF method we also need the concept of quadratic bounding functions
(QBFs). The quadratic functionsQ(x) and q(x) are called a quadratic upper (lower)
bounding function (QUBF/QLBF) if they satisfy

f(x) 6 Q(x)
∆
= f(x0) + g(x0)

T (x� x0)

+
1
2
(x� x0)

TM(x� x0); 8x 2 D; (2.12)

f(x) > q(x)
∆
= f(x0) + g(x0)

T (x� x0)

+
1
2
(x� x0)

Tm(x� x0); 8x 2 D; (2.13)

where g(x) ∆
= rf(x) and x0 2 D. By using the LBFs of g(x) we can generate

two sets of symmetric matrices,MM andMm, each M 2MM or m 2Mm gives
us a QUBF or a QLBF.

THEOREM 2.1 (the property of QBFs). For each M 2MM or m 2Mm,
(i) we have quadratic upper and lower bounding functions Q(x) and q(x), i.e.,

q(x) 6 f(x) 6 Q(x); 8x 2 D; (2.14)

where Q(x) and q(x) are determined by (2.12) and (2.13);
(ii) M = M(D;x0) ! H(x0), m = m(D;x0) ! H(x0) as width(D) ! 0,

where H(x) is the Hessian of f(x);
(iii)

0 6 f(x)� q(x) = O(kx� x0k
3); (2.15)

0 6 Q(x)� f(x) = O(kx� x0k
3): (2.16)

Theorem 2.1 enables us to develop a globally convergent optimization algorithm
with superlinear/quadratic rate.

3. Phase I: detecting subregions which possibly contain the solution(s)

Consider an n-dimensional global optimization problem

min
x2S

f(x); (3.1)
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where f : Rn ! R is continuously differentiable and

S = fx 2 Rn
j As(i) 6 x(i) 6 Bs(i); i = 1; . . . ; ng (3.2)

is a box in Rn. As mentioned in Section 1, an LBF-based global optimization
algorithm consists of three phases. In this and the following sections we will
discuss each phase and develop an LBF-based global optimization algorithm.

The purpose of Phase I is to detect those subregions which possibly contain
solutions. In the meantime, we hope that in this phase large subregions which do
not contain the solutions can be quickly removed.

The idea for Phase I is rather simple. Assume that we have a set of subregions
and the LBFs of f orrf over each subregion are available. Thanks to these LBFs,
those subregions assured not to contain a solution will be deleted. To improve
the estimation of the solution(s) and get rid of more subregions which do not
contain a solution, we should refine the remaining region and obtain LBFs over
the refined subregions. A subregion is saved for the next phase if it is considered
to possibly contain a solution. The procedure is repeated until all subregions are
either removed or saved for the local phase. Thus the basic operations of Phase I
are decomposition, LBF generating, shrinking and region storing (for Phase II). To
get more detail, let us assume that P is a collection of subboxes of S and D 2 P .

(1) Decomposition. Decomposition strategy used in the global phase of the algo-
rithm for univariate global optimization [24] cannot be simply extended to n-
dimensional cases, since it is not easy to determine a decomposition by the inter-
section of two n-dimensional hyperplanes. Instead we simply use bisection along
the longest edges of D.

(2) LBF generating. For the current considered subbox we improve the estimations
of f or/and rf by generating their LBFs. In the LBF methods we can choose
different types of LBFs to use. We can choose LBFs of f (e.g. in the global phase
of Algorithm 3.2 in [23]), LBFs of rf (e.g. in local optimization Algorithm 4.1
in [24]), LBFs of f and rf (e.g. in the local phase of Algorithm 3.2 in [23]),
or even LBFs of the Hessian as long as they can be constructed. Our numerical
experience indicates that it is better to use LBFs of f and rf alternatively in
Phase I for n-dimensional problems, in contrast with Phase I in the univariate case,
where only the LBFs of f are needed. Besides, LBFs of rf will be needed in the
criterion when a subregion has to be stored. As mentioned before, our procedure
for constructing LBFs of a factorable function provides LBFs, bounds (estimations
of min and max) and the function value at one vertex of the specific box.

(3) Shrinking. Shrinking the currently considered box by LBFs is crucial for quickly
detecting the subregions which possibly contain the solutions. Assume that �f is the
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best function value we have so far and that LBFs of f and g = rf over the box D
are available:

lf (x) 6 f(x) 6 Lf (x); (3.3)

�f 6 f(x) 6 �f ; (3.4)

where

lf (x) = f(x0) +mT
f (x� x0); (3.5)

Lf (x) = f(x0) +MT
f (x� x0); (3.6)

and

lg(x) 6 g(x) 6 Lg(x); (3.7)

�g 6 g(x) 6 �g; (3.8)

where

lg(x) = g(x0) +mg(x� x0); (3.9)

Lg(x) = g(x0) +Mg(x� x0): (3.10)

Then the box D can be shrunk either by (3.3) to (3.6) or (3.7) to (3.10).

(i) Shrinking by LBFs of f . Obviously we can remove the whole D if �f > �f .
If �f 6 �f , D cannot be removed but it can possibly be shrunk by the LLBF
of f . Although fx 2 D j lf (x) > �fg is the largest subregion we can remove
from D by lf (x) and �f , we will not delete the whole subregion, since typically
such a subregion is not a box and its deletion will necessitate additional box
decomposition and storage in order to continue the procedure. To avoid additional
box decomposition, we instead remove only a subbox from the set such that the
remaining subregion of D is still a box. For each 1 6 i 6 n, we have

lf (x) = mT
f x+ r

> mf (i)x(i) + s+ r; (3.11)

where

r = f(x0)�mT
f x0; (3.12)

s = min
x2D

X
j 6=i

mf (j)x(j): (3.13)
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If mf (i) 6= 0, let

zi =
�f � s� r

mf (i)
: (3.14)

If mf (i) > 0 and zi < B(i), then for any point of

�Di = fx j A(i) 6 x(j) 6 B(j); j = 1; . . . ; n; j 6= i; zi 6 x(i) 6 B(i)g;

(3.15)

f(x) > lf (x) > mf (i)x(i) + s+ r > �f; (3.16)

and �Di can be discarded. Similarly, if mf (i) < 0 and zi > A(i), then

D̂i = fx j A(i) 6 x(j) 6 B(j); j = 1; . . . ; n; j 6= i; A(i) 6 x(i) 6 zig

(3.17)

can be removed.

(ii) Shrinking by LBFs of g(x) = rf . In a way similar to the use of interval
analysis for global optimization [7, 18], a box can be shrunk by LBFs of rf . If
�g(i)�g(i) > 0 for some 1 6 i 6 n, then @f=@xi 6= 0 for any x 2 D, the whole
D can be deleted. Assume �g(i)�g(i) 6 0 for all i = 1; . . . ; n. The box can be
shrunk by the LBFs ofrf . For each 1 6 i; j 6 n, the ith term of lg(x)

lig(x) = (mi
g)
Tx+ ri

= mi
g(j)x(j) + si + ri; (3.18)

where mi
g is the ith row of mg and

ri = gi(x0)�mi
gx0; (3.19)

si = min
x2D

X
k 6=j

mi
g(k)x(k): (3.20)

If mi
g(j) 6= 0, let

zij = �
si + ri

mi
g(j)

: (3.21)

If mi
g(j) > 0 and zij < B(j), then we can discard a subbox

�Dij = fx j A(k) 6 x(k) 6 B(k); k = 1; . . . ; n; k 6= j;

zij 6 x(j) 6 B(j)g (3.22)
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since for any x 2 �Dij

gi(x) > lig(x) > 0: (3.23)

If mi
g(j) < 0 and zij > A(j), then the subbox

D̂ij = fx j A(k) 6 x(k) 6 B(k); k = 1; . . . ; n; k 6= j;

A(j) 6 x(j) 6 zijg (3.24)

can be discarded. Similarly, we can use Lg(x) to delete subboxes in which

gi(x) 6 Lig(x) 6 0; 1 6 i 6 n: (3.25)

(4) Box storing (for Phase II). Phase I stops when all the remaining subboxes
possibly contain solutions. What do we mean by ‘possibly containing a solution’?
Recall that LBFs of rf provide us a quadratic lower bounding function (QLBF)
as expressed in (2.13)

f(x) > q(x); 8x 2 D; (3.26)

where

q(x) = f(x0) + g(x0)
T (x� x0) +

1
2(x� x0)

Tm(x� x0): (3.27)

Since f(x) = f(x0) + g(x0)
T (x� x0) +

1
2(x� x0)

TH(�)(x� x0), we have

(x� x0)
T (H(�)�m)(x� x0) > 0; 8x 2 D: (3.28)

According to the continuity of LBFs, km �H(x)k ! 0 as width(D) ! 0. Thus
m > 0 (positive definite) implies H(x) > 0 for all x 2 D if width(D) is small
enough. We do not know how small width(D) should be, i.e., we cannot guarantee
that the function is convex if m > 0, but it is reasonable to think that the box
‘possibly contains a solution (more precisely, a local minimizer)’ if m > 0.

The other condition of storing a subbox for the next phase is that width(D) 6
�0; 1 > �0 > 0. This means that when the subregion is small enough, we would
like to get into the next phase.

Let P andQ be the collections of subboxes of S. Initially, P is a finite partition
of S and Q is empty. Denote �i = estminDi

f , where Di 2 P . Let �f be the best
function value we have so far. The algorithm of Phase I is the following.

Phase I (the global phase, detecting subboxes which possibly contain the solu-
tion(s))

While P 6= ;, do:

Step 1. Choose a box D 2 P with � = minf�1; �2; � � �g and get the stored LBFs
of f and g.
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Step 2. If � > �f + �, go to Step 1; else go to Step 3.

Step 3. Bisect D, for each subbox Dj (j = 1; 2), do:

(1) Use the stored LBFs of f and g to shrink the box (still denote the
remaining box by Dj). If Dj = ;, go to (5); else go to (2).

(2) Obtain the LBFs of g(x), use them to shrink the box. If Dj = ;, go to
(5); else go to (3).

(3) If m > 0 or width(Dj) 6 �0, store Dj intoQ and save the correspond-
ing LBFs of f and g; else go to (4).

(4) Obtain the LLBF of f , update �f , use it to shrink the box. If Dj = ;, go
to (5); else store Dj into P and save the corresponding LBFs of f and
g.

(5) If both D1 and D2 are done, go to Step 4; else go to (1).

Step 4. If P 6= ;, go to Step 1; else Phase I is finished.

After Phase I we have a collection Q of remaining subboxes. Each element of
Q has the possibility of containing a (local) minimizer. Note that the final �f at the
end of Phase I is typically lower than those �f’s at the time such subregions were
stored. By using the lower value �f and the stored LBFs, we expect that the stored
subregions can be further shrunk or simply removed. Thus to save local search in
the next phase, we should use the final �f and the stored or new generated LBFs to
further shrink or eliminate such small regions. There is another problem we should
deal with to save the computation in local optimization. The collection Q often
contains several subboxes which are adjacent to each other and relate to the same
minimizer – i.e., they are sort of in the same basin of a local minimizer. Obviously,
it will be a waste if we perform local optimization for each of these boxes. Instead
we do local search once in the box containing the union of these adjacent boxes.

Therefore, we have a phase after Phase I and before the next local optimization
phase; we call it Pre-Phase II.

Pre-Phase II (preparation of Phase II)

Initial data: the collectionQ, the collection tempQ = ;.

Step 1. Choose a boxD 2 Qwith � = minf�1; �2; . . .g and get the corresponding
LBFs of f and g.

Step 2. If � > �f + � go to Step 1; else go to Step 3.

Step 3. Obtain LBFs of f on the box, update �f and �, use the LLBF to shrink D.
If D = ;, go to Step 1; else go to Step 4.

Step 4. For each Di 2 Q � D, if Di

T
D 6= ;, generate a box D̂ � Di

S
D, store

D̂ into tempQ. If Q 6= ; go to Step 1; else go to Step 5.

Step 5. Q  tempQ.
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4. Phase II: finding minimizers

Now after Phase I and Pre-Phase II, we are almost assured that each box in Q
contains a global minimizer (still no guarantee of course). In the next phase, we need
to perform a finer search over the remaining regions. To develop an efficient scheme
for the local phase, let us go back to re-examine local optimization problems.

4.1. A FRAMEWORK FOR LOCAL MINIMIZATION

Consider an unconstrained optimization problem

min
Rn

f(x); (4.1)

where f(x) : Rn ! R is a continuously differentiable function. In unconstrained
optimization problems we usually call a point x1 a better point than x0 if f(x1) <
f(x0). One class of methods used most often in optimization is to find a better point
in each iteration. That is, given an initial point x0, a better point x1 is determined
by

x1 = x0 � c h; (4.2)

where h is a ascent direction of f , such as the steepest ascent direction h = g(x0)
or the Newton’s direction h = H(x0)

�1g(x0) when H(x0) is positive definite.
Since we do not know how far we can go along the direction, the step size c has to
be determined by line search methods such as Armijo rule, golden section, etc. The
calculation of c usually involves many function evaluations. Now we introduce a
new framework [24] to find a better point without using a line search, and thus it
is function evaluation free.

Let D be an n-dimensional box in Rn, i.e.,

D = fx 2 Rn
j A(i) 6 x(i) 6 B(i); i = 1; . . . ; ng: (4.3)

Assume that

f(x) 6 Q(x)
∆
= f(x0) + g(x0)

T (x� x0)

+1
2(x� x0)

TM(x� x0); 8x 2 D; (4.4)

where x0 2 D, g(x) ∆
= rf(x) and M is an n� n symmetric matrix.

THEOREM 4.1 (finding a better point along the gradient direction). Letx1 = x0�

c g(x0), where

c = minf1; c1; c2g; (4.5)

c1 = maxfc > 0 j x0 � c g(x0) 2 Dg; (4.6)
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c2 =

8>><
>>:
(2� �)mini2I+

�
1

M(i;i)+
P

j 6=i
jM(i;j)j

�
; I+ 6= ;

1; I+ = ;;

(4.7)

I+ =

8<
:1 6 i 6 n

������M(i; i) +
X
j 6=i

jM(i; j)j > 0

9=
; ; (4.8)

0 < � < 1 is a small number. Then f(x1) 6 f(x0). If x1 6= x0, then f(x1) < f(x0).

THEOREM 4.2 (finding a better point using a quadratic upper bounding function).
Suppose M > 0. Let x1 = x0 � cM�1g(x0), where

c = maxf2� � > c > 0 j x0 � cM�1g(x0) 2 Dg; (4.9)

0 < � < 1 is a small number. Then f(x1) 6 f(x0). If x1 6= x0, then f(x1) < f(x0).

From these theorems in [24], we can see that it is possible to find a better point
without using a line search, and thus without any function evaluation for various
situations.

To use the framework, we need to construct the quadratic upper bounding func-
tion (QUBF) in (4.4). By the results in Section 2, a QUBF can be obtained by using
the LBFs of the gradient function. On the basis of the framework, we have devel-
oped a globally convergent local optimization algorithm which has the following
properties. First, no line search along the negative gradient direction is needed for
global convergence, because the LBFs offer regional information. This enables us
to obtain a function evaluation free algorithm. Second, the superlinear/quadratic
rate can be achieved without calculating Hessians explicitly. Third, the switching
policy from global convergence to superlinear/quadratic rate is derived in a natural
manner and has fairly small computation requirement.

4.2. A GLOBALLY CONVERGENT SUPERLINEAR/QUADRATIC RATE ALGORITHM

Denote the jth component of the increment vector dx by

dx(j) = B(j)�A(j); j = 1; . . . ; n; (4.10)

where A is the ‘lower left’ vertex and B the ‘upper right’ vertex of a box D. In the
algorithm, we use xi to represent the current iterate, which is one of the vertices of
the boxDi; we use the notation gi = g(xi) = rf(xi); and all subscript i’s indicate
the ith iteration.

ALGORITHM 4.1.
Data: Initial x0, dx0, g0 and h�1

∆
= g0.

General steps (the ith iteration, i = 1; 2; . . .):
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Step 1. Generate boxi from xi, dxi; hi�1.

Step 2. Generate Mi, �i, �i on boxi and gi.

(�i 6 g(x) 6 �i over boxi.)

Step 3. Determine ci and hi.

(If Mi > 0; hi = M�1
i gi; otherwise hi = gi.)

Step 4. Update xi to get the next point xi+1.

Step 5. Update dxi to get the increment vector dxi+1.

In Step 1, boxi is determined by the available increment vector dxi and the
ascent direction of the last iteration hi�1:

Ai(j) =

�
xi(j)� dxi(j); hi�1(j) > 0
xi(j); hi�1(j) 6 0

(4.11)

Bi(j) =

�
xi(j); hi�1(j) > 0
xi(j) + dxi(j); hi�1(j) 6 0

(4.12)

j = 1; . . . ; n:

In Step 3,

hi =

(
M�1

i ; Mi > 0 and kMik > �0 > 0
gi; otherwise

(4.13)

ci is determined by (4.5) to (4.8).
In Step 5, dxi is updated as follows:

dxi+1(j)

=

8><
>:

maxfK dxi(j); 
1 maxk jhi(k)j g; jxi+1(j)� xi(j)j = dxi(j)

maxf
0 dxi(j); 
1 maxk jhi(k)j g; jxi+1(j)� xi(j)j = 0

maxf jxi+1(j)� xi(j)j; 
1 maxk jhi(k)j g; 0 < jxi+1(j)� xi(j)j < dxi(j)

(4.14)

j = 1; . . . ; n:

The details of Algorithm 4.1 are given in [24]. According to the algorithm, the
direction hi will be naturally changed from the gradient direction to the Newton’s-
like direction hi = M�1

i gi when xi is close to a local minimizer (Mi � H(xi) asxi
is close to the minimizer). Its typical behavior can be observed from Figure 4.1. For
the Branin function [22] the algorithm starts from an arbitrary chosen initial point
x0 = [8; 12]T with an arbitrary chosen initial increment vector dx0 = [0:5; 0:5]T

and the initial box is formed along the negative gradient direction. Before the
further iteration, the largest step size is taken within the box and the box is enlarged
twice along both axes. When reaching x3, the next box is enlarged in one axis and
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Figure 4.1. A typical trajectory from x0 = 8[ 12].

reduced to the actual step taken in the other axis. At x4 the box formed along the
previous search direction is no longer lined up with the new search direction. A
new box is generated for this and its size is shrunk in both axes. The sequence fxig
converges to the minimizer x� = [9:4248; 2:4750]T . The algorithm converges in
14 iterations with the total number of gradient and LBF evaluations equal to 15 (g0

is needed to start).

THEOREM 4.3 (global convergence). Assume that f : Rn ! R is twice contin-

uously differentiable, g ∆
= rf , and fxig is an infinite sequence constructed by

Algorithm 4.1. Also assume that fxig is a bounded sequence,xi+1 = xi� cihi and
xi+1 6= xi for all i’s. Then there exists an accumulation point x� 2 Rn such that
(1) g(x�) = 0;
(2) xi ! x� as i!1;
(3) dxi ! 0 as i!1.

THEOREM 4.4 (superlinear convergence with root rate r = 1:618). Assume thatxi!
x� 2 arg minff(x)g, H(x�) > 0, and kH(x�)k > � > 0. Then xi ! x� with root
rate r = 1:618.

THEOREM 4.5 (quadratic convergence). Suppose thatxi! x� 2 arg minff(x)g,
H(x�) > 0 and kH(x�)k > � > 0. Then xi ! x� quadratically.
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Now Algorithm 4.1 can be used for each subbox in the local phase of solving
a global optimization problem. The only difference is that we need to keep the
trajectory inside the box (constrained by the box) – i.e., for the current box D =
fx j A(i) 6 x(i) 6 B(i); i = 1; . . . ; ng the increment vector dxi is determined by

dxi(j) = minfd~xi(j); xi(j)�A(j); B(j) � xi(j)g; j = 1; . . . ; n; (4.15)

where d~xi is determined in [24]. In [24] we showed that dxi(j) > 0 for j = 1; . . . ; n
and all i’s. However, dxi(j) = 0 might occur for (4.15) since xi may reach the
boundary. If that happens the algorithm stops at a (constrained) local minimizer
on the boundary of the box. (In general, it is not a global one.) It is reasonable to
choose the center of the box as the starting point.

Phase II (finding minimizers)

Step 1. For each box D 2 Q, set x0 = the center of D.

Step 2. Use Algorithm 4 to find a minimizer x� in D.

Step 3. Store x� and f(x�) in the sets MINPT and MINVAL.

5. Phase III: verification of the solutions

Usually global solutions are found during Phase II. However, we cannot be assured
that they are indeed global ones, since generally �f � estmin f > � for some or all
boxes inQ. For example, a box may contain one global minimizer and a local one.
If the local algorithm found the local one, we are not done yet. If both are global
ones, we have not found all of them. If we want to find global solutions for sure,
then the third phase, called the verification phase, is needed.

Assume that x� is a minimizer inside the box D. If the convexity of f over D
can be guaranteed, then x� is also the global minimizer in D and the whole D can
be removed. As mentioned before, m > 0 implies H(x) > 0 on D if width(D) is
small enough. The problem is that we do not know how small it should be. In other
words, LBFs of rf can provide some information about the Hessian, but cannot
replace it. To detect the convexity we have to use the bound of the Hessian. Suppose
H(x) > H for all x 2 D, where H is an n � n constant matrix. If H > 0, then
H(x) > 0 for all x 2 D and D can be removed. If H > 0 cannot be guaranteed
(remember that the Gerschgorin Circle Theorem gives us a sufficient condition),
then we obtain the lower bound Ĥ of the Hessian on the smaller box D̂1 � D (say,
width(D̂) = 1

3width(D)). If Ĥ > 0 then D̂1 can be deleted; otherwise repeat the
procedure on an even smaller box D̂2 � D̂1 until a box D̂ � D can be removed.

The next step is to decompose D � D̂ into 2n subboxes (in general). Since
the neighborhood D̂ of x� has been removed, these 2n subboxes can be quickly
discarded, hopefully, by the LBFs of either f orrf .

The algorithm of Phase III is the following.
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Phase III (verification of the solutions)

Data: the collectionsQ and P = ;, the sets MINPT, MINVAL and 0 < �1; 
 < 1.

Step 1. Pick a box D 2 Q and x� 2 D. If x� is on the boundary of D go to Step
4; else go to Step 2.

Step 2. Obtain the lower bound H of the Hessian on D. If H > 0, go to Step 1;
else go to Step 3.

Step 3. D̂  D.

While H > 0 cannot be guaranteed (i.e., when the Gerschgorin Circle
Theorem does not hold) or width(D̂) > �1, do the following:

Get a smaller D̂, find the lower bound H of the Hessian on D̂.

If width(D̂) 6 �1, go to Step 4; else go to Step 5.

Step 4. Generate the set TD of boxes by bisecting D; go to Step 6.

Step 5. Generate the collection TD of boxes by the decomposing D � D̂ into
(generally) 2n boxes.

Step 6. For each box Di 2 TD, obtain the LLBF of f . If Di cannot be removed,
obtain the LBFs of rf . If Di cannot be removed, store Di in P and save
the corresponding LBFs.

Step 7. If P = ;, go to Step 8; else go to Step 9.

Step 8. In the set MINPT remove those points whose function values > �f . Global
optimization is DONE and the solutions are given by MINPT and �f .

Step 9. �0  
�0, then go to Phase I.

The basic idea of Step 5 can be illustrated by Figure 1. Note that Phase III and
Phase I use different subdivision methods (bisection along the longest edges is
used in Phase I).

Figure 1. D � D̂ is divided into 2n boxes.
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6. Multivariate global optimization algorithm

Finally, we have the global optimization algorithm for the problem (3.1).

ALGORITHM 6.1 (global optimization for n-dimensional problems).
Initial step: P — a finite partition of S, Q = ;.
Phase I.
Pre-Phase II.
Phase II.
Phase III.
If P 6= ;, go to Phase I with the new
P; Else STOP.

THEOREM 6.1 (convergence in a finite number of steps). Assuming that in prob-
lem (3.1) f : Rn ! R is continuously differentiable, the normal vectors of the
LBFs of f and rf are bounded over any subbox of S. Also assume that problem
(3.1) has a finite number of solutions. Then Algorithm 6.1 can find the �-global
solution(s) within finite steps.

Proof. First we show that each phase will terminate within a finite number of
steps.

The stopping criterion of Phase I is that every subbox in P is either removed
or shrunk to one or more subboxes with its (their) width(s) not longer than �0 (and
they will be stored in Q). For each subbox in P , if it cannot be removed, it will be
bisected along the longest length of the box. Since this decomposition procedure
is exhaustive (width of boxes! 0), the width of the subbox will be no larger than
�0 after a finite number of steps.

ObviouslyQ contains a finite number of subboxes, thus Pre-Phase II terminates
within a finite number of steps.

The proof for Phase II can be found in [24] (by remembering the fact that we
are seeking �-global solutions).

Phase III terminates within a finite number of steps sinceQ has a finite number
of subboxes and Step 3 stops in a finite number of steps (similar reason to bisection).

IfP 6= ; after Phase III, the algorithm will re-start from Phase I with the newP .
Assume that the algorithm keeps re-starting from Phase I to Phase III. Since �0 is
shrunk for each cycle (�0  
�0; 0 < 
 < 1), all global minimizers will be found
in Phase III and the associated neighborhoods (boxes) will be removed. In other
words, in the next Phase I, each subbox of P does not contain a solution. Since its
width tends to zero, it will be removed after a finite number of cycles (thus a finite
number of steps) because of continuity of LBFs.

Therefore, Algorithm 6.1 terminates within a finite number of steps. E
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7. Numerical testing

In this section, we will present numerical examples to illustrate how Algorithm 6.1
works, and demonstrate its potential and feasibility. In [22] there are some standard
test problems. The problems which are most often used in [22] are chosen for this
purpose.

(1) min fBR(x); (7.1)

�5 6 x1 6 10; 0 6 x2 6 15; (7.2)

where

fBR(x) =

�
x2 �

5:1
4�2 x

2
1 +

5
�
x1 � 6

�2

+ 10
�

1�
1

8�

�
cosx1 + 10: (7.3)

This function has three local minimizers (�3:142; 12:275), (3:142; 2:275) and
(9:425; 2:475). They are also global ones, and the global minimum is 0.398.

(2) min fC(x); (7.4)

�5 6 xi 6 5; i = 1; 2; (7.5)

where

fC(x) = 4x2
1 � 2:1x4

1 +
1
3
x6

1 + x1x2 � 4x2
2 + 4x4

2: (7.6)

This function is symmetric about the origin and has three conjugate pairs of
local minima. The global minimum is equal to �1:0316 and it is attained at
(0:08983;�0:7126) and (�0:08983; 0:7126).

(3) min fGP (x); (7.7)

�2 6 xi 6 2; i = 1; 2; (7.8)

where

fG(x) = (1 + (x1 + x2 + 1)2(19� 14x1 + 3x2
1 � 14x2 + 6x1x2 + 3x2

2))

� (30 + (2x1 � 3x2)
2(18� 32x1 + 12x2

1

+ 48x2 � 36x1x2 + 27x2
2)): (7.9)

The global minimum is equal to 3 and it is reached at (0;�1). There are four local
minima in the minimization region.

(4) min fR(x); (7.10)

�1 6 xi 6 1; i = 1; 2; (7.11)

where

fR(x) = x2
1 + x2

2 � cos 18x1 � cos 18x2: (7.12)
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Table 1. Number of function evaluations (1).

f rf LBF(f ) LBF(rf ) LBF(H) total

BR 3 3 13 32 3 54
C 2 2 24 40 2 70
GP 1 1 34 56 6 98
R 1 1 23 23 4 52
H 1 1 73 111 3 189
S 1 1 40 60 1 103

The global minimum is equal to �2 and it is reached at (0; 0). There are about 50
local minima in the region.

(5) min fH(x); (7.13)

0 6 xi 6 1; i = 1; 3; (7.14)

where

fH(x) = �
4X
i=1

ci exp

2
4� nX

j=1

�ij(xj � pij)
2

3
5 ; (7.15)

and parameters are same as those in [22]. The global minimum is equal to �3:86
and it is reached at the point (0:114; 0:556; 0:852).

(6) min fS(x); (7.16)

0 6 xi 6 10; i = 1; 4; (7.17)

where

fS(x) = �
5X
i=1

1
(x�A(i))(x �A(i))T + ci

; (7.18)

and parameters are same as those in [22]. The local minima with values approxi-
mately equal to�1=ci are reached at the points close to A(i); i = 1;m. The global
minimum is equal to�10:1532 and it is reached at (4:0000; 4:0001; 4:0000; 4:0001).

The results of numerical testing are given by Tables 1 and 2. Figure 2 shows
the scenario of Problem (1) after Pre-Phase II. The solid boxes (inside the original
region) are the remaining subboxes after Pre-Phase II. More figures of other 2-D
problems are shown in [24]. The �’s indicate the matching points when LBFs were
generated. Roughly speaking, the proportion of the computation requirement for
each iteration is aboutN + 1=2 vsN vsN(N + 1)=2, increasing with each phase.

8. Discussion

In this paper, we develop an LBF-based global optimization algorithm for solvingn-
dimensional problems. Under certain conditions it can find the �-global solution(s)

jogo343.tex; 30/06/1998; 13:20; v.7; p.19



402 XIAOJUN WANG AND TSU-SHUAN CHANG

Table 2. Number of function evaluations (2).

�0 Phase I Pre-Phase II Phase II Phase III Phase I total

BR 0.5 30 3 18 3 — 54
C 0.5 52 6 10 2 — 70
GP 0.5 67 1 20 10 — 98
R 0.5 36 5 3 8 — 52
H 0.05 163 2 7 15 2 189
S 0.05 96 0 6 1 — 103

−5 0 5 10
0

5

10

15

 

BR −− Branin function

1

2
3

Figure 2. The scenario after Pre-Phase II.

of the given problem within finite steps. We need an extensive numerical testing
(especially for high dimensional problems) in the future to validate its effectiveness.

People may notice that we do have choices in the algorithm if the given problem
is continuously differentiable and all LBFs can be fairly simply generated. For
example, we can choose using the LBFs of f , 5f or both for all phases except
Phase II. The different choices will not affect the result of Theorem 6.1. Of course
some steps and strategies need to be adjusted. For instance, if we use only LBFs of
f instead of those of f and5f , then mi will not be available and the box storing
criterion should be adjusted, say, changed to the width of a box 6 �0. For different
problems or different available information, these alternatives give us flexibility in
using the algorithm.
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As we mentioned before, the solution of the given problem is usually found
after Phase II or even Phase I with no guarantee. To verify the solution we have to
use the direct information of the Hessian, since the LBFs of5f only can provide
some indirect information of the Hessian and cannot predict the convexity of the
function. Unavoidably the verification costs more computation effort. Depending
what is needed in a specific application, we can decide what needs to be done.
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